ReTiS Lab

Scuola Superiore S. Anna
Pisa

pyight © Paolo Gai 2006

kernel overview

summary

introduction

walking through the architecture
shark user interface

libraries and drivers

installing the kernel

‘Copyight © Paclo Gai 200¢ hitpshark

what is S.Ha.R.K.?
N
S.Ha.R.K. is an open source real-time kernel mainly
developed at Scuola Superiore S. Anna, Italy and at the
Robotic Lab of the University of Pavia, Italy
it supports:
modular interface for the specification of scheduling algorithms
device drivers for the most common hardware
advanced time handling

pyight © Paolo Gai 2006

Paolo Gai
Evidence Srl
part |
introduction
objectives N

simplicity of the development

flexibility in the modification of the scheduling policy
predictability

adherence to the POSIX standard

pyight © Paolo Gai 2006

the POSIX standard .

a standard for the programming interface of UNIX
systems

standard C library

process and thread primitives, scheduling

file and I/O primitives

synchronization (semaphores, mutex, condition variables,

message passing)

shared memory

signals and timers

the POSIX standard (2)

standards
1003.1a the core
1003.1b real-time extensions
1003.1c thread extensions
others sporadic server, timers, ecc...

real time profiles
1003.13 subsets of the 1003.1 standard

pyight © Paolo Gai 2006

© Paolo Gai 2006

POSIX 1003.13 profilgs

PSE51 minimal realtime system profile
no file system
no memory protection
monoprocess multithread kernel

PSE52 realtime controller system profile
PSE51 + file system + asynchronous 1/0

PSE53 dedicated realtime system profile
PSES51 + process support and memory protection

PSE54 multi-purpose realtime system profile
PSE53 + file system + asynchronous 1/O

‘Copyight © Paclo Gai 200¢

hitpshark

S.Ha.R.K. And POSIX

implements 90% of POSIX PSE52

standard C library

file system

pthread library

not asynchronous I/0

not locale and setjmp support
implemented through modules and by redefining the
standard primitives

© Paolo Gai 2006

S.Ha.R.K. and freedo;{n

S.Ha.R.K. is free software
it is distributed under the GPL license
the word free stands for freedom
3 kinds of freedom
to distribute it
to read, to modify and to enhance it
to obtain the same kind of freedom everywhere

supported platforms N

GNU gcc compiler
host operating systems
MS-DOS / Windows (DIGPP)
Linux (GCC)
multiboot image format (COFF/ELF)
target configuration
MS-DOS with a DOS extender
GRUB

pyight © Paolo Gai 2006

© Paolo Gai 2006

part Il

walking through the architecture

pyight © Paolo Gai 2006 i3

architecture

tasks and instances

a task is a concurrent activity
executed by the kernel
into a private stack
implemented by a C function
a task execution can be divided in instances
instances can be periodic (e.g., one every second)
for example, a clock task has one instance/second
the task_endcycle function signal the end of a task instance

/ight © Paoio Gai 200 is

scheduling algorithms:
Round Robin

this is the tradictional and simplest scheduling algorithm
used in most OS
every task:

is inserted into a ready queue

has a Quantum

consumes the Quantum when it executes
when the Quantum finishes, the task is inserted at the
end of the ready queue, and the next task in it is
executed

pyight © Paolo Gai 2006 7

application T0/...|Tn
Lo application
libraries
bra (global data)
resource modules M1
aperiodic servers modules M2
=
scheduling modules ‘ I\I\le
generic kernel M5
OSLib OSLib
hardware hardware
a typical task body
void * body(void *arg)
{
/* initialization part */
for (;;) {
/* the instance */
task_endcycle() ;
}
return myvalue;
}
RM and EDF

Rate Monotonic (RM)
tasks are periodic or sporadic
the priority of a task is proportional to the period

Earliest Deadline First (EDF)
tasks are periodic or sporadic
the priority of a tasks is the deadlline, that is the absolute start time of
the next instance

the task with the lowest priority is always executed

© Paolo Gai 2006 s

RM and EDF (2)

an example:
TaskA b - — |
Rate
Monotonic Task B T | E— !_l—\ | — l
EDF... TaskA [y le— | = |
Task B T I 1 l 1 l
...and there Task A T—‘ l — l r—\l
is still space! l

TaskB | | R |

pyight © Paolo Gai 2006

Constant Bandwidth ;\Server

every task has a:
Period
Mean Execution Time (MET)

tasks are scheduled using EDF

when a task instance executes more than the MET, its

deadline is postponed by one period

TaskA —

TaskB | —— |

© Paolo Gai 2006

system initialization

B

the modules are registered during the system
initialization

the main() function is called into an NRT task

p
n
. (that call main)
[TBS |
PS

NRT OSLib - hardware

/ight © Paoio Gai 200

modules organization

modules are registered in the
kernel in a given order

module at level 0 has higher
priority than the module at level 1

module 0

module 1

module 2

module 3

a task that is assigned to a module is scheduled in
background with respect to tasks of higher priority

modules

© Paolo Gai 2006

modules organizatiop\ (2)

*

suppose the following scenario:
periodic tasks / aperiodic tasks
Hard Real Time using EDF
Soft Real Time using CBS
Non Real Time using Round Robin

0: Earliest Deadline First
1: Round Robin

2: Constant Bandwidth Server

pyight © Paolo Gai 2006

the initialization file N

TIME _ kernel_register_levels__(void *arg)
{
struct multiboot_info *mb =

(struct multiboot_info *)arg;

INTDRIVE_register_level(Q, T, FLAG) ;
EDF_register_level (EDF_ENABLE_ALL) ;
RR_register_level (RRTICK, RR_MAIN_YES, mb);
CBS_register_level (CBS_ENABLE_ALL, 1);

dummy_register_level ();

SEM_register_module();
CABS_register_module () ;
return TICK;

© Paolo Gai 2006

the init_ task

an user applricartion start with the main () function,
usually understanding a set of default initialized services
keyboard, file system, semaphores

the __init__ task is created at startup into the Round
Robin module

it initializes a set of devices

it calls the main function

pyight © Paolo Gai 2006

the _init__ task (2)

void *Afiniﬁg;(Qbid *arg)
{
struct multiboot_info *mb =
(struct multiboot_info *)arg;

device_drivers_init();

set_shutdown_task () ;
sys_atrunlevel (call_shutdown_task, NULL,
RUNLEVEL_SHUTDOWN) ;

HARTPORT_init ();
call_main__ (mb);
return (void *)O0;

}

pyight © Paolo Gai 2006

the main() function

syntax (ANSI C)

int main(int argc, char **argv)

is called by the __init__ task

used to start an application

when the main () ends, the system DOES NOT
shutdown

main () is a function like all the others

/ight © Paoio Gai 200

the main() function (2)

is usually used for:
create and activate the application tasks
init the devices not initialized into __init__
set the exception handlers

the main() function:
may terminate or may check for the exit conditions

usually does not have an endless busy cycle
(a busy cycle inhibits the JET of the dummy, useful for load
control)

© Paolo Gai 2006

a real example

the example shows:
interaction between CBS and EDF
independence of the application from the scheduling policy (two
initialization files)
use of the
graphic library
keyboard
exceptions
JET functions

pyight © Paolo Gai 2006

S.Ha.R.K. user interface

pyight © Paolo Gai 2006

time handling

two data structures to handle the time
TIME microseconds
seconds+nano (POSIX)
to get the current time since startup
TIME sys_gettime(struct timespec *t)
more precise timings can be obtained using the Pentium
TSC

there is no abstraction of tick

struct timespec

pyight © Paolo Gai 2006

time handling (2)

the PC timer can be programn;ed to raise an interrupt (\)
every (max) 55 ms

periodic, oneshot, oneshot with APIC
a timer interrupt raised every x us
a timer interrupt raised only when needed

el 02

desired event times

— T
o tick
perodi A\ W W W AN W
Gl &
ihe the PIT, at least
[|\

one-shot

el 2

© Paolo Gai 2006

time handling (3)

OSLib event abstraction
a function called at a specified time
the source can be a timer or an interrupt from an external
interface
events runs at the highest interrupt priority, and cannot be
preempted
events are used by the scheduling algorithms to implement
asynchronous behavior like: deadline checks, periodic
reactivations, capacity exhaustions

/ight © Paoio Gai 200

system lifecycle

the i386 starts in real mode
callto__kernel_register_levels_

the i386 goes in protected mode
RUNLEVEL_INIT: call registered functions

the first task is created, __init__is called

the Application runs

RUNLEVEL_SHUTDOWN: call registered functions
user task killed

RUNLEVEL_BEFORE_EXIT: call registered functions
the i386 goes back in real mode
RUNLEVEL_AFTER_EXIT: call registered functions
back to DOS or reset!

© Paolo Gai 2006

system shutdown

when the Application finishes, S.Ha.R.K.
returns to DOS if called with the eXtender X
halt the PC if called with GRUB

to finish an application you have to
finish (or kill) all the user tasks
call exit ()

pyight © Paolo Gai 2006

call a function at exig time

sys_atrunlevel

int sys_atrunlevel (
void (*func_code) (void *),
void *parm, BYTE when);

the when parameter can be:
RUNLEVEL_INIT
RUNLEVEL_SHUTDOWN
RUNLEVEL_BEFORE_EXIT
RUNLEVEL_AFTER_EXIT

© Paolo Gai 2006

task, threads and PO§IX

a task can be tihc')ught asa POSIX thread
S.Ha.R.K. implement

cancellation, cleanup handlers, thread specific data, join,
semaphores, mutexes, condition variables

in a way similar to POSIX PSE51

POSIX is implemented through modules and name
redeclarations

primitive names task_* become pthread_*

pyight © Paolo Gai 2006

tasks and models

each task is composed by:
a model
abody void *mybody(void *arg)
the model encapsulates the QoS requirements of the
task to the system
period, deadline, wcet
there are a predefined set of task models
the user can create his/her own models

© Paolo Gai 2006

models

HARD_TASK_MODEL mp;
hard_task_default_model (mp) ;
hard_task_def_ctrl_jet (mp);
hard_task_def_arg(mp, arqg);
hard_task_def_wcet (mp, mywcet);
hard_task_def_mit (mp,myperiod);
hard_task_def_usemath (mp);

/ight © Paoio Gai 200

models (2)

SOFT_TASK_MODEL mp;
soft_task_default_model (mp);
soft_task_def_arg(mp, arg);
soft_task_def_group(mp, mygroup);
soft_task_def_met (mp, mymet);
soft_task_def_period (mp,myperiod) ;
soft_task_def_usemath (mp);

© Paolo Gai 2006

task model

each task use the models to give
its QoS requirements

Genenc <:I @
Kernel
g,

the Generic Kernel tries to
find a module that can handle the model
a model is not interpreted by the Generic Kernel

T~

pyight © Paolo Gai 2006

task creation and acEivation

*

a task can be created...
PID task_createn(char *name,
TASK (*body) (..), TASK_MODEL *m, ...)
PID task_create(char *name, TASK
(*body) (..), TASK_MODEL *m, RES_MODEL *r)
...then activated...
int task_activate(PID pid)

...and finally killed!

int task_kill(PID pid)

© Paolo Gai 2006

task states for an EDF
scheduler A

riedic

-]

EDF_IDLE)

groups

A
each task is identified by a group number
all the tasks with the same group number can be
activated and killed atomically

int group_activate (WORD g)

int group_kill (WORD g)
tasks can also be created and guaranteed atomically in
group

see the group creation howto

pyight © Paolo Gai 2006

© Paolo Gai 2006

job execution time (JET)

S.Ha.R.K. allows the monitoring of the task execution
time
int jet_getstat (PID p, TIME *sum,
TIME *max, int *n, TIME *curr);
int jet_delstat (PID p);
int jet_gettable(PID p,
TIME *table, int n);
JET must be enabled before task creation
soft_task_def_ctrl_jet (mp);

kernel exceptions

mapped on the RT-signal SIGHEXC
when a module or a device raises an exception the
signal is thrown

if you need to redefine a signal handler, send me a mail ;-)
here are some exception numbers

deadline miss (7)

WCET exaustion (8)

(see include/bits/errno.h)

/ight © Paoio Gai 200

© Paolo Gai 2006

POSIX cancellation

specifies how a task reacts to a kill request

there are two different behaviors:
deferred cancellation
when a kill request arrives to a task, the task does not die. the task
will die only when it will execute a primitive that is a cancellation
point. this is the default behavior of a task.
asynchronous cancellation

when a kill request arrives to a task, the task dies. the programmer
must ensure that all the application data structures are coherent.

cancellation states and

cleanups
A
the user can set the cancellation state of a task using:
int task_setcancelstate(int state, int *oldstate);

int task_setcanceltype(int type, int *oldtype);

the user can protect some regions providing destructors
to be executed in case of cancellation

int task_cleanup_push(void (*routine) (void *),
void *arg);

int task_cleanup_pop(int execute);

pyight © Paolo Gai 2006

© Paolo Gai 2006

cancellation points task cancellation

the cancellation points are primitive that can potentially to kill a task, use:

block a task; if when they are called there is a kill request int task_kill(PID p); (Or pthread_cancel)

pending the task will die. int group kill(WORD g);
task_testcancel, pthread_testcancel,
sem_wait, cond_wait, pthread_cond_wait, the flag NO_KILL can be specified at task creation to
nanosleep, task_endcycle, inhibit task cancellation.

and others are cancellation points POSIX signals kills by default the process and not the

threads (tasks). That is, the default signal handler end

mutex_lock, is NOT a cancellation point o
the whole application.

pyight © Paolo Gai 2006 i Byight © Paclo Gai 2006

mutual exclusion ‘ low level mutual exclusion
2 2
allows to execute some code in an atomic way with obtained disabling interrupts
respect to: nothing can interrupt the code
all the kernel activities warning: no more than a few us!
(the code executes with disabled interrupts) kern_fsave(), kern_frestore()
all the tasks kern_cli(), kern_sti()

(the code executes with disabled preemption) obtained disabling preemption
only the tasks that share the same resources

only interrupts can preempt the running task
(the code is inserted in the middle of 2 primitives lock/unlock; ¥ P - P P Lo g_
semaphores / mutexes / CABS) the scheduler is disabled (priority inversion!)

task_preempt () , task_nopreempt ()

/ight © Paoio Gai 200 5 © Paolo Gai 2006

POSIX semaphores POSIX semaphores ()

N
used to implement sem_t mutex; ﬁ sgrr;aphore
. ti

mutual exclusion ctinition 0is |gnored

synchronization int main () (see the POSIX standard)
extends the POSIX semaphores implementing a multi- { n th —
unit blocking wait is the initia

g sem_init (&mutex, O 1 Semaphore value

cancellation points
sem_wait and sem_xwait are cancellation points
a non-cancellation point semaphore exists
internal semaphores (see the S.Ha.R.K. manual) }

sem_getvalue (&mutex, &val);

read the value of the
semaphore counter

pyight © Paolo Gai 2006 E Byight © Paclo Gai 2006

POSIX semaphores (3)

void *demotask (void *arg)

{ blocking wait
other primitives:
sem_trywait (non-blocking primitive),

sem_wait (&mutex) ;
sem_xwait (decrement by a value >1)

<critical section>

sem_post (&mutex) ;

the typical signaling primitive
other primitives:
sem_xpost (increment by a value >1)

pyight © Paolo Gai 2006

mutexes

A

used to implement the mutual exclusion

allow the use of different protocols

(PIL, PC, SRP, ...)

a structure called mutex attribute must be used to set a
mutex protocol

POSIX have a little different sintax for the mutexes

pyight © Paolo Gai 2006

mutexes (2)

definition of the mutex

definition of the mutex
ﬁ attribute
PI_mutexattr_t a;

o |
PI_mutexattr_default(a); mutex attribute

mutex_init (&mymutex, &a);

mutex_t mymutex;

int main() {

initialization of the mutex:
} now the mutex is a priority
inheritance mutex

/ight © Paoio Gai 200

mutexes (3)

void *demotarsk(void *arg) |

— K
mutex_lock (smymutex) ; mutex Iogk. the mutex
resource is now locked

<critical section>

mutex_unlock (&mymutex) ; —

mutex unlock: the
mutex resource is now
free

difference between semaphores and
mutexes: the lock/unlock pair
must be called by the same task

© Paolo Gai 2006

condition variables

used to implement synchronization with mutexes
a little example
1 mutex and 1 condition variable

a semaphore implementation using mutex and condition
variables

pyight © Paolo Gai 2006

condition variables (2\)

struct {
mutex_t m;
cond_t «c;
int number;
} mysem;
void mysem_init(struct mysem *s)
{
PI_mutexattr_t a;
PI_mutexattr_default(a);
mutex_init (&s->m,&a);
cond_init (&s->c);

number = 0;

pyight © Paolo Gai 2006

10

condition variables (3)

void mywait (struct mysem &s) { mutex_lock(&s->m);
while (!number) cond_wait(&s->c,&s->m);
s->number--;

mutex_unlock (&s->m) ;

the cond_wait MUST

always be put into a

cycle that test for the
condition

pyight © Paolo Gai 2006

condition variables (4)

void mypost (struct mysem *s) {
mutex_lock (&s->m) ;
s—>number++;

cond_signal (&s->c);

mutex_unlock (&s->m) ;

cond_broadcast (&s->c) ;

© Paolo Gai 2006

cancellation and mutexes

mutexes are not cancellation points
the condition wait is a cancellation point
when a task is killed while blocked on a condition
variable, the mutex is locked again before dying
a cleanup function must be used to protect the task from a
cancellation
if they are not used, the mutex is left locked, and there are no
tasks that can unlock it!

/ight © Paoio Gai 200

cancellation and mutexes (2)

void cleanup_lock(void *arg)

{ mutex_unlock(&((struct mysem *)arg)->m); }

void mywait_real (struct mysem *s) {
mutex_lock (&s->m) ;
task_cleanup_push(cleanup_lock, (void *)é&s);
while (!number) cond_wait (&s->c,&s->m);
task_cleanup_pop(0) ;
s->number--;

mutex_unlock (&s->m) ;

© Paolo Gai 2006

libraries and drivers

pyight © Paolo Gai 2006

available libraries

kernel library
task handling
function names similar to POSIX pthread Lib.
RT signals
memory allocation
standard C library
independent part provided by the OSLib
dependent part provided by the kernel
stdio can be used only when the FS is enabled

© Paolo Gai 2006

11

available libraries (2)

drivers

keyboard / mouse / Framebuffer / COM / sound blaster
framegrabber / HDD / net / PCI / USB / ...

written from scratch

derived from Linux using some glue code
portings

MPEG audio / video

FFTW

pyight © Paolo Gai 2006

drivers

a driver should control an interface
S.Ha.R.K. supports
polling
interrupt (fast routine or driver task)
DMA
a typical driver should address three stages:
initialization / running / shutdown

© Paolo Gai 2006

the filesystem

=

FAT16 ﬁIeéYétéh - allow the usage of the standard C file
operations
see demos/oldexamples/fs/initfs.c

see demos/mesaref

if the application is loaded through the X extender you
can use some DOS callbacks into
__kernel_register_levels_ and into the
RUNLEVEL_AFTER_EXIT fUnCtiOnS

see oslib/11/i386/x-dos.h

see demos/dosfs

/ight © Paoio Gai 200

the console

direct output to the text mode video memory
supports 25 and 50 lines text mode
#include “11/i386/cons.h”

void set_visual_page (int page);

void set_active_page (int page);

int get_visual_page(void);

int get_active_page(void);

void place(int x,int y);

void cursor(int start,int end);

void clear (void);

void scroll(void);

© Paolo Gai 2006

the console (2)

void cputc(char c);
void cputs(char *s);
int cprintf (char *fmt,...);
void putc_xy(int x,int y,char attr,char c);
char getc_xy(int x,int y,char *attr,char *c);
void puts_xy(int x,int y,char attr,char *s);
int printf_xy(int x,int y,char attr,

char *fmt,...);

Colors (BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, BROWN, LIGHTGRAY,
DARKGRAY, LIGHTBLUE, LIGHTGREEN, LIGHTCYAN, LIGHTRED, LIGHTMAGENTA,
YELLOW, WHITE)

pyight © Paolo Gai 2006

input layer: keyboarq\

initialized into ;initv
handles keyboard, mouse, joystick, speaker, event
debugger

to read a key use
int keyb_getch(BYTE wait)
wait can be BLOCK or NONBLOCK
the returned value is the key pressed
also the keycode can be read, using keyb_getcode

© Paolo Gai 2006

12

input layer: keyboarq\ (2)

to set the italian keyboard use
keyb_set_map (KEYMAP_IT) ;

to assign an event to a key use
KEY_EVT k;
k.flag = CNTR_BIT;
k.scan = KEY_C;
k.ascii = 'c¢';
keyb_hook (k, endfun) ;

pyight © Paolo Gai 2006 i

input layer: mouse

input layer: joystick / buzzer

JOY26_init();
JOY_enable () ;
JOY_disable();
JOY_getstatus (x0, yO0, x1, yl, buttons);

SPEAK26_init () ;
speaker_sound (hz, ticks);
speaker_mute () ;

/ight © Paoio Gai 200

B
-

MOUSE_PARMS mouse = BASE_MOUSE;
mouse_def_task (mouse, (TASK_MODEL *)&mouse_nrt);
mouse_init26 (&mouse) ;
mouse_setlimits (xmin, ymin, xmax, ymax);
mouse_setposition(320,280);
mouse_setthreshold(2);
mouse_grxshape (img, mask, bpp);
mouse_grxcursor (cmd, bpp);
mouse_on () ;
mouse_hook (my_mouse_handler) ;
graphic primitives

Frame Buffer

a set of primitives allows the drawing of simple shapes
MESA libraries are also supported

provides a complete library for 3D graphics
if the graphic card access the video memory using
banks, the graphics primitives have to be run in mutual
exclusion

© Paolo Gai 2006

graphic primitives 2)

FB26_init();

FB26_open (device);

FB26_use_grx (device);
FB26_setmode (device, ”640x480-16") ;
FB26_close (device) ;

grx_box(xl, yl, x2, y2, GREEN);

grx_plot(x, y, color);

grx_line(x1l, yl, x2, y2, color);

grx_text (”Goofy", x, y, color, fore, back);
grx_disc(x, y, radius, color);

grx_close();

pyight © Paolo Gai 2006

part V

installing the kernel

© Paolo Gai 2006

13

MS-DOS/Windows ho§ts

=+ . =
download mindjgpp.zip, sharkXXX.zip, unzip32.exe, and then:
1) Download unzip32.exe, mindj333.zip and sharkl4.zip from the S.Ha.R.K. web
site.
2) unzip32 -o mindj333.zip -d c:
3) cd c:\djgpp
4) install.bat
5) setvar.bat
(this script automtically set the environement variables
for DJGPP, you must run this files every time you reboot
and start a compile session)

Now DJGPP is installed and ready to compile shark

6) unzip32 -o sharkld.zip -d c
7) cd c:\shark
8) Edit shark.cfg:

This step is needed to setup the compiler options and to optimize the kernel for
faster and more precise time computation.

pyight © Paolo Gai 2006

MS-DOS/Windows hosts (2)

9) make
S.Ha.R.K. is compiled

10) cd demos
11) make

The demos are compiled.

If host and target machine are the same and you want to test a demo

12) cd <demo dir>
13) x <demo name>

In real DOS environement, you can compile and run a demos without reboot

pyight © Paclo Gai 2006 5

Linux hosts

Download sharkXXX.zip from the website
1) Download shark-1.4.tar.bz2 from the S.Ha.R.K. web site

2) tar xvjf shark-1.4.tar.bz2
3) cd shark
4) Edit shark.cfg

This step is needed to setup the compiler options and to optimize the kernel
for faster and more precise time computation.

5) make
5.Ha.R.K. is compiled

6) cd demos

7) make

The demos are compiled. You can run the demos using the FreeDOS bootdisk with
x.exe or directly load a demo thought Grub

/ight © Paoio Gai 200

directory tree

config
configuration files for the S.Ha.R.K. makefiles
distrib
internal scripts for website distributions
include
standard include files
non-standard includes in separate subdirs
oslib includes in 11
kernel
kernel, tracer
modules
scheduling modules

© Paolo Gai 2006

directory tree (2)

oslib

i386 low level source code

boot code

C library code independent from the architecture
drivers

one dir for each device
libc

C library dependent from the architecture

pyight © Paolo Gai 2006

directory tree (3)

fs
the file system source code (only FAT 16)
port
FFTW, mpeg, mpeg2 and mpg123, mesa, zlib, png, OCERA memory
manager
lib
compiled libraries
demos

some demos that shows the various features of the kernel
advdemos, unsupported
other demos, not part of the base distribution

pyight © Paolo Gai 2006

14

your application

Y
use an existing demo as a base for your applications
a demo typically contains:
a makefile
an initialization file
an application
a scheduling module

your demo applicatiq\n

(2)

the makefile kaen;éé/mix/makefiie)

ifndef BASE Z6025E_ - NI6o25e

o BTTV. - FRamegrabber
BASE=../.. __CM7326__ CM7326
endif - GPU Frequency

DIDMA, - 0(1) Memory Allocator
Tre_ Frame Buffor
- " FFT. - Fast F Transfc
include $(BASE)/config/config.mk TRRST_ - FIRST Framework
—— - GRX - GRX library
your application name 2C iy

— e ¢
(must correspond 10 a ¢ file)

PROGS= mix

include $ (B

PCLB33_ -POLB33
mix: — TPCLAB -PCLAB
make -f $(SUBMAKE) APP=mix OTHEROBJS="initfile.o" PNG - & graphic format
PPORT__ - Parallel Port
OTHERINCL= SHARKOPT="__OLDCHAR__ _ GRX__"«—] “pxc Framegrabber
SERVO__ - Servo motors

available ibraries:
6025E.

ZINPUT_
LINUXC26_ - Linux Comp 2.6

TNET_ o
OLDCHAR__ - Ke d
/eonfig/exaple.mk [T gner OBIS that compose SO — NEan 3D lbrary
the application “rol_ PCibus

__SNAPSHOT__ - Snapshot
TFTP,

—usB_
“zuB_

Input layer

~Trivial FTP
uUsB
‘compression routines 1

and more!

pyight © Paolo Gai 2006

pyight © Paolo Gai 2006

the multiboot image

B

the applicarfibni4is' linked staticélly in a binary image that

follows the multiboot standard
there is not dynamic linking

all the simbols are resolved at compilation time, and
they are allocated at memory addresses >1Mb

a multiboot image can be booted using GRUB

running an application

you need:
a PC with MS-DOS
a PC with Windows 95/98 (DOS Mode)

or a boot floppy (a floppy image is provided on the web site)

the Kernel can boot
using GRUB
(no graphical and DOSFS support)
using our custom eXtender

/ight © Paoio Gai 200

© Paolo Gai 2006

web sites

CIE =
S HaRII

http://shark.sssup.it
http://lancelot.sssup.it/bugzilla

http://feanor.sssup.it/retis-projects

OSL.ib

http://oslib.sourceforge.net

contact info

Paolo Gai

http://feanor.sssup.
http://www.evidence.eu.com

pj@evidence.eu.com

(please use the Shark Forum
for SHaRK related questions!)

it/~pj

pyight © Paolo Gai 2006

pyight © Paolo Gai 2006

15

